Abstract

A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr2O3, monodispersed particles, for solar absorbers applications. The deposited particles were annealed at various temperatures in a hydrogen atmosphere for 2h to study the annealing temperature dependence of the structural, chemical and optical properties of the particles grown on tantalum substrates. The deposited Cr/α-Cr2O3 was characterized by X-ray diffraction (XRD), attenuated total reflection (ATR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and diffuse reflectance UV–vis–NIR spectroscopy. The XRD and ATR analysis indicated that by increasing annealing temperature, the particles crystallinity was improved and Ta2O5 was formed around 600°C, due to the fast oxygen diffusion from the deposited α-Cr2O3 toward the tantalum substrate. The optical measurements show that samples annealed at 400 and 500°C exhibit the targeted high absorbing optical characteristics of “Black chrome”, while those annealed below 400°C and above 500°C show a significant low absorptivity and high emissivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.