Abstract

The effect of annealing on bulk heterojunction solar cells utilizing the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), fabricated using various solvents was studied. In the solar cells fabricated using chloroform, the power conversion efficiency was enhanced from 1.2 to 2.5% by thermal annealing at 75 °C, near the glass-transition temperature of the bulk heterojunction film. We discuss the effects of annealing on the photovoltaic properties by considering the exciton dissociation and carrier transport efficiencies obtained from photoluminescence spectra, X-ray diffraction measurement, and atomic force microscope observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.