Abstract

Automatic contingency selection aims to quickly predict the impact of a set of next contingencies on an electric power system without actually performing a full ac load flow. Artificial neural network methods have been employed to overcome the masking effects or slow execution associated with existing methods. However, the large number of input features for the ANN limits its applications to large power systems. In this paper, a novel feature selection method, named the Weak Nodes method, based on a heuristic approach is proposed for an ANN‐based automatic contingency selection for electric power system, especially for the voltage ranking problem. Pre‐contingency state variables of weak nodes in the power system are adopted as input features for the ANN. The method is tested on the 77 busbar NGC derived network by Counter‐propagation Method and it is proved that it reduces the input features for ANN dramatically without losing ranking accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.