Abstract

This paper describes the process undertaken to analyze numerically the vibrational behavior of the moving assembly of a dynamic loudspeaker with double bottom suspension and in the absence of the above one using the finite element method (FEM). The study focuses on the low frequency range. Model calibration was performed based on experimental measurements of the resonance frequency and diaphragm displacement. The importance of the participation factors associated to the excitation force and the changes produced in these when unbalanced forces are introduced are emphasized. The analysis also provides data to decide on the distance between suspensions, their optimal number of folds and the placement of the lead wires, parameters of great interest on the design of this type of loudspeakers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.