Abstract

To evaluate electrostatics interactions, molecular dynamics (MD) simulations rely on Particle Mesh Ewald (PME), an algorithm that uses Fast Fourier Transforms (FFTs) or, alternatively, on Fast Multipole Methods (FMM) approaches. However, the FFTs low scalability remains a strong bottleneck for large-scale PME simulations on supercomputers. On the opposite, FFT-free FMM techniques are able to deal efficiently with such systems but they fail to reach PME performances for small- to medium-size systems, limiting their real-life applicability. We propose ANKH, a strategy grounded on interpolated Ewald summations and designed to remain efficient/scalable for any size of systems. The method is generalized for distributed point multipoles, and so for induced dipoles, which makes it suitable for high performance simulations using new generation polarizable force fields toward exascale computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.