Abstract
Our new molecular dynamics (MD) simulation program, MODYLAS, is a general-purpose program appropriate for very large physical, chemical, and biological systems. It is equipped with most standard MD techniques. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT). Several new methods have also been developed for extremely fine-grained parallelism of the MD calculation. The virtually buffering-free methods for communications and arithmetic operations, the minimal communication latency algorithm, and the parallel bucket-relay communication algorithm for the upper-level multipole moments in the FMM realize excellent scalability. The methods for blockwise arithmetic operations avoid data reload, attaining very small cache miss rates. Benchmark tests for MODYLAS using 65 536 nodes of the K-computer showed that the overall calculation time per MD step including communications is as short as about 5 ms for a 10 million-atom system; that is, 35 ns of simulation time can be computed per day. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.