Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10 −5 S.I. and 28 to 75 · 10 −5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (K max) and the pole to the magnetic foliation (K min) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call