Abstract

In this paper a unified theory of systematically rotating and peculiar motions is developed for homeoidally striated Jacobi ellipsoids, where both real and imaginary rotations are considered. The effect of positive or negative residual motion excess along the equatorial plane is considered to be equivalent either to an additional real or an imaginary rotation, respectively. The principle results consist of (i) the discovery that homeoidally striated Jacobi ellipsoids always admit an adjoint configuration i.e. a classical Jacobi ellipsoid of equal mass and axes; (ii) the establishment of further constraints on the amount of residual velocity anisotropy along the principal axes for triaxial configurations; (iii) the finding that bifurcation points from axisymmetric to triaxial configurations occur as in classical Jacobi ellipsoids, contrary to earlier findings. An interpretation of recent results from numerical simulations on stability is provided in the light of the model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call