Abstract

An anisotropic yield criterion for polycrystalline metals which uses texture data and takes advantage of crystal symmetries is presented. A linear transformation is developed to map an anisotropic yield surface for a polycrystal to an appropriate isotropic yield surface. The transformation developed reflects the symmetry of the material being modeled. First, the transformation is determined. Then, information regarding the orientation distribution (texture) of the crystals in a polycrystalline aggregate is used to determine, via averaging, the transformation for the polycrystal. The transformation, along with appropriate isotropic yield surface, provides a phenomenological approach to modeling yield, yet accounts for microstructural texture. The approach reduces to the Hill (1950) anisotropic plasticity theory under certain conditions. The yield surfaces and R-values for various face-centered-cubic ( fcc) polycrystalline textures are computed by this method. Results compare favorably with those given by other theories, and with experiment. The method proves to have the computational efficiency of phenomenological approaches to modeling yield, while effectively incorporating the physics of more complex crystallographic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.