Abstract

The structure, luminescence and etching kinetics for porous silicon stain-etched at different temperatures are studied. The results reveal that for temperatures below 10 °C and for short etching times, a novel anisotropic structure based on surface roughness preferentially oriented in the ⟨100⟩ direction is observed. At temperatures higher than 10 °C or large etching times, typical macropores and mesopores with non-preferential pore wall orientation are detected. The luminescence spectra of the samples with preferential surface roughness orientation are red-shifted with respect to the samples with typical isotropic orientation. The results are interpreted in terms of average etching rates and pore growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.