Abstract
Semipolar (112) InGaN/GaN superlattice templates with different periodical InGaN layer thicknesses were grown on m-plane sapphire substrates using metal-organic chemical vapor deposition (MOCVD). The strain in the superlattice layers, the relaxation mechanism and the influence of the strain relaxation on the semipolar superlattice template were explored. The results demonstrated that the strain in the (112) InGaN/GaN superlattice templates was anisotropic and increased with increasing InGaN thickness. The strain relaxation in the InGaN/GaN superlattice templates was related to the formation of one-dimension misfit dislocation arrays in the superlattice structure, which caused tilts in the superlattice layer. Whereas, the rate of increase of the strain became slower with increasing InGaN thickness and new misfit dislocations emerged, which damaged the quality of the superlattice relaxed templates. The strain relaxation in the superlattice structure improved the surface microtopography and increased the incorporation of indium in the InGaN epitaxial layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.