Abstract

The microstructure of metals and foams can be effectively modelled with anisotropic power diagrams (APDs), which provide control over the shape of individual grains. One major obstacle to the wider adoption of APDs is the computational cost that is associated with their generation. We propose a novel approach to generate APDs with prescribed statistical properties, including fine control over the size of individual grains. To this end, we rely on fast optimal transport algorithms that stream well on Graphics Processing Units (GPU) and handle non-uniform, anisotropic distance functions. This allows us to find large APDs that best fit experimental data and generate synthetic high-resolution microstructures in (tens of) seconds. This unlocks their use for computational homogenisation, which is especially relevant to machine learning methods that require the generation of large collections of representative microstructures as training data. The paper is accompanied by a Python library, PyAPD, which is freely available at: www.github.com/mbuze/PyAPD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.