Abstract
Re-based transition metal dichalcogenides have attracted extensive attention owing to their anisotropic structure and excellent properties in applications such as optoelectronic devices and electrocatalysis. The present study methodically investigated the evolution of specific Raman phonon mode behaviors and phase transitions in monolayer and bulk ReSe2 under high pressure. Considering the distinctive anisotropic characteristics and the vibration vectors of Re and Se atoms exhibited by monolayer ReSe2, we perform phonon dispersion calculations and propose a methodology utilizing pressure-dependent polarized Raman measurements to explore the precise structural evolution of monolayer ReSe2 under the stress fields. Varied behaviors of the Eg-like and Ag-like modes, along with their specific vector transformations, have been identified in the pressure range 0-14.59 GPa. The present study aims to offer original perspectives on the physical evolution of Re-based transition metal dichalcogenides, elucidating their fundamental anisotropic properties and exploring potential applicability in diverse devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.