Abstract

Consider a dynamic general relativistic spacetime in which the proper infinitesimal interval along one spatial coordinate direction decreases monotonically with time, while the corresponding intervals increase along other spatial directions. In a system undergoing such complete anisotropic collapse/expansion, we look for the formation of a cosmic double-jet configuration: free test particles in the ambient medium, relative to the collapsing system, gain energy from the gravitational field and asymptotically line up parallel and antiparallel to the direction of collapse such that their Lorentz factors approach infinity. A strong burst of electromagnetic radiation is expected to accompany this event if some of the free test particles carry electric charge. Previous work in this direction involved mainly Ricci-flat spacetimes; hence, we concentrate here on inhomogeneous perfect fluid spacetimes. We briefly explore the possible connection between these theoretical cosmic jets and astrophysical jets. We also discuss other general relativistic scenarios for the formation of cosmic jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call