Abstract

Layered 2M-WS2 is recently observed to show Majorana bound states in vortices, but its superconducting pairing mechanism remains unknown, hindering the understanding of its topological superconducting nature. Using the ab initio Migdal-Eliashberg theory and electron-phonon Wannier interpolation, we demonstrate that both bulk and bilayer 2M-WS2 have a single anisotropic full-gap superconducting order of s-wave symmetry. We successfully reproduce the experimental superconducting critical temperature for the bulk and predict the bilayer 2M-WS2, a two-dimensional (2D) Z2 topological metal with nontrivial edge states right at the Fermi energy, to superconduct at 7 K, much higher than that in most 2D transition metal dichalcogenides (TMDs). A distinct proximity-enhanced surface superconductivity is further revealed by simulating quasiparticle density of states. This work unveils a universal electron-phonon full-gap pairing in 2M group VI TMDs and suggests a strong intrinsic surface-bulk proximity effect for 2M-WS2, paving the way to engineering topological superconductivity in TMD-based nanoscale devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.