Abstract
This work investigates experimentally and numerically frontal polymerization in a thermally anisotropic system with parallel copper strips embedded in 1,6-hexanediol diacrylate resin. Both experiments and multiphysics finite element analyses reveal that the front propagation in the thermally anisotropic system is orientation-dependent, leading to variations in the front shape and the front velocity due to the different front-metal strip interaction mechanisms along and across the metal strips. The parameters entering the cure kinetics model used in this work are chosen to capture the key characteristics of the polymerization front, i.e., the front temperature and velocity. Numerical parametric analyses demonstrate that the front velocity in the directions parallel and perpendicular to the metal strips increases as the system size decreases and approaches the analytical prediction for homogenized systems. A two-dimensional homogenized model for anisotropic frontal polymerization in the metal-resin system is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.