Abstract
Frontal polymerization, which involves a self-propagating polymerizing reaction front, has been considered as a rapid, energy-efficient, and environmentally friendly methodology to manufacture lightweight, high-performance thermoset polymers, and composites. Previous work has reported that the introduction of thermally conductive elements can enhance the front velocity. As follow-up research, the present work investigates this problem more systemically using both numerical and experimental approaches by investigating the front shape, front width, and heat exchange when aluminum and cooper metal strips are embedded in the resin. The study reveals that the enhancement in the front velocity is mainly due to a preheating effect associated with the conductive element. Moreover, the numerical parametric study for the system size shows that the front speed increases as the system size decreases, ultimately approaching a prediction provided by a homogenized model for polymer-metal composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.