Abstract

A new class of exact solutions depicting anisotropic compact objects is presented in the current work. This spherically symmetric matter distribution assumes a specific form of anisotropy to obtain the exact solution for the field equations. The obtained interior solutions are smoothly matched with the Schwarzschild exterior metric over the bounding surface of a compact star and together with the condition that the radial pressure vanishes at the boundary, the form of the model parameters are attained. One of the interesting features of the obtained solutions is the codependency of the metric potentials. We have considered the pulsar 4U1608-52 with its current estimated data (mass =1.57-0.29+0.30M⊙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$=1.57^{+0.30}_{-0.29} ~M\\odot $$\\end{document} and radius =9.8±1.8\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$=9.8 \\pm 1.8$$\\end{document} km [Özel in Astrophys J 820(1):28, 2016]) to study the model graphically. Moreover, we have studied the physical features and some important stability conditions for the model. Tabular comparison with other known pulsars infers that the obtained model represents a compact star within a radius of 8–12 km. Finally, we have found the angular momentum that causes the dragging of inertial frames of the slowly rotating equilibrium compact objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call