Abstract

Enhanced sampling molecular dynamics (MD) simulations have been extensively used in the phase transition study of simple crystalline materials, such as aluminum, silica, and ice. However, MD simulation of the crystallization process for complex crystalline materials still faces a formidable challenge due to their multicomponent induced multiphase problem. Here, we realize the ab initio accuracy MD crystallization simulations of complex ceramics by using anisotropic collective variables (CVs) and machine learning (ML) potential. The anisotropic X-ray diffraction intensity CVs provide precise identification of complex crystal structures with detailed crystallography information, while the ML potential makes it feasible to further perform enhanced sampling simulations with ab initio accuracy. We verify the universality and accuracy of this method through complex ceramics with three kinds of representative structures, i.e., Ti3SiC2 for the MAX structure, zircon for the mineral structure, and lead zirconate titanate for the perovskite structure. It demonstrates exceptional efficiency and ab initio quality in achieving crystallization and generating free energy surfaces of all these ceramics, facilitating the analysis and design of complex crystalline materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.