Abstract

In this work we present a novel metal-semiconductor heterostructure that contains triangular and prism-shaped plasmonic gold nanostructures directly synthesized and assembled onto ZnO nanostructures. Spatially-resolved (SR) high-resolution electron energy loss spectroscopy (EELS) at the local (sub-nanometer scale) level confirmed the field enhancement of the local electromagnetic fields in the surroundings of the triangular and prism-shaped Au nanostructures and in the interfacial junction between Au and ZnO. Different LED excitation sources have been systematically selected in the whole UV–vis-NIR range to evaluate the photocatalytic response of the Au-ZnO heterostructures towards the oxidation of n-hexane, selected as a model VOC present in indoor environments. The Au-ZnO exhibits visible expanded photo-response with the more energetic interband and intraband electrons and the higher LED irradiation wavelengths and it is able to outperform its ZnO plain counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call