Abstract

To assess the impact elevated tibial tubercle-trochlear groove (TT-TG) distance and patella height, as measured by the Caton-Deschamps Index (CDI), have on the isometry of a reconstructed medial patellofemoral ligament (MPFL). Nine fresh-frozen cadaveric knees were placed on a custom testing fixture, with a fixed femur and a mobile tibia. A suture fixed to the MPFL origin on the patella and free to move at the Schöttle point on the femur represented a reconstructed MPFL. A local coordinate system was established, and retroreflective markers attached to the suture quantified MPFL length changes by use of a 3-dimensional motion capture system. The tubercle was transferred to create TT-TG distances of 20mm and 25mm and CDIs of 1.2 and 1.4 (patella alta). Recordings of the MPFL suture length change as the knee was brought through a range of motion were made using all combinations of tubercle anatomy in a randomized order for each specimen. A generalized estimating equation modeling technique was used to analyze and control for the clustered nature of the data. Knees with native tibial tubercle anatomy showed MPFL isometry through 20° to 70° range of motion. Tibial tubercle lateralization (increased TT-TG distance) significantly altered MPFL isometry with a TT-TG distance of 20mm(P < .0001). Patella alta significantly altered MPFL isometry with a CDI of 1.2 (P= .0182). The interaction of tibial tubercle lateralization combined with patella alta significantly increased the amount of anisometry seen in the reconstructed MPFL (P < .001). Increased tibial tubercle lateralization and patella alta produce anisometry in an MPFL reconstruction using currently recommended landmarks, leading to potentially increased graft tension and potential failure. Tibial tubercle transfer should be considered when performing an MPFL reconstruction for recurrent patellofemoral instability in the setting of significant patella alta and an elevated TT-TG distance-especially when both are present-because an isolated MPFL reconstruction will be prone to failure given the anisometry shown in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.