Abstract

The electronic structures of phenylnitrenes with anionic π-donating substituents are investigated by using mass spectrometry and electronic structure calculations. Reactions of para-CH(2)(-)-substituted phenylnitrene, formed by dissociative deprotonation of p-azidotoluene, with CS(2) and NO indicate that it has a closed-shell singlet ground state, whereas reactions of p-oxidophenylnitrene formed by dissociative deprotonation of p-azidophenol indicate either a triplet ground state or a singlet with a small singlet-triplet splitting. The ground electronic state assignments based on ion reactivity are consistent with electronic structure calculations. The stability of the closed-shell singlet states in nitrenes is shown by Natural Resonance Theory to be very sensitive to the amount of deprotonated-imine character in the wave function, such that large changes in state energies can be achieved by small modifications of the electronic structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.