Abstract
Ionic liquid electrolytes (ILEs) are promising to develop high-safety and high-energy-density lithium-metal batteries (LMBs). Unfortunately, ILEs normally face the challenge of sluggish Li+ transport due to increased ions' clustering caused by Coulombic interactions. Here a type of anion-reinforced solvating ILEs (ASILEs) is discovered, which reduce ions' clustering by enhancing the anion-cation coordination and promoting more anions to enter the internal solvation sheath of Li+ to address this concern. The designed ASILEs, incorporating chlorinated hydrocarbons and two anions, bis(fluorosulfonyl) imide (FSI- ) and bis(trifluoromethanesulfonyl) imide (TFSI- ), aim to enhance Li+ transport ability, stabilize the interface of the high-nickel cathode material (LiNi0.8 Co0.1 Mn0.1 O2 , NCM811), and retain fire-retardant properties. With these ASILEs, the Li/NCM811 cell exhibits high initial specific capacity (203 mAh g-1 at 0.1 C), outstanding capacity retention (81.6% over 500 cycles at 1.0 C), and excellent average Coulombic efficiency (99.9% over 500 cycles at 1.0 C). Furthermore, an Ah-level Li/NCM811 pouch cell achieves a notable energy density of 386Wh kg-1 , indicating the practical feasibility of this electrolyte. This research offers a practical solution and fundamental guidance for the rational design of advanced ILEs, enabling the development of high-safety and high-energy-density LMBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have