Abstract

The synthesis and characterisation of a library of acyclic antimony(III) and bismuth(III) triaryl pnictogen bonding (PnB) receptor systems are reported. In the first-generation receptor series, quantitative 1 H NMR chloride titration experiments in THF solvent media reveal halide anion binding potency is intimately correlated with both the electronic-withdrawing nature of the aryl- substituent and the polarisability of the PnB donor. Further extensive anion binding investigations with the most potent Sb- and Bi-based PnB receptors: 1⋅Sb2CF3 and 1⋅Bi2CF3 , reveal novel selectivity profiles, both displaying Cl- selectivity relative to the heavier halides and, impressively, to a range of highly basic oxoanions. The synthesis and preliminary chloride anion binding studies of a series of novel tripodal tris-proto-triazole triaryl Sb(III) and Bi(III) mixed PnB-HB receptor systems are also described. Whereas parent triphenyl Sb(III) and Bi(III) compounds are incapable of binding Cl- in THF solvent media, the PnB-triazole HB host systems exhibit notable halide affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call