Abstract

AbstractChemical doping is a powerful way to enhance the electrical performance of organic electronics. To avoid perturbing the ordered molecular packing of organic semiconducting hosts, molecular dopants are deposited on the surface of highly crystalline organic semiconductor thin films. However, such surface doping protocols not only limit charge‐transfer efficiency but also cause dopant diffusion problems, which significantly reduce charge carrier mobility and device stability. Here, an innovative anion bulk doping strategy is reported that allows effective doping of organic single‐crystalline films (OSCFs) without disrupting molecular ordering to improve the performance of organic field‐effect transistors (OFETs). This method is mediated by anion dopants and can be pictured as an effective charge transfer of dopants with organic semiconductors in liquid phase. The direct introduction of dopant anions overcomes limitations of partial charge transfer while avoiding interference from dopant aggregation with crystallization. Using this method, the average carrier mobility of the OSCFs is boosted by ≈2.5 times. Significantly, low‐voltage OFETs developed from anion‐doped OSCFs exhibit a near‐ideal subthreshold swing of 59.2 mV dec−1 and unparalleled mobility as high as 19.8 cm2 V−1 s−1 together with excellent stability. The concept of anion doping opens new avenues for improving the electrical performance of organic electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.