Abstract

Background: Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. Objective: This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. Methods: We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. Results: After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. Conclusions: The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.

Highlights

  • Our protocol was developed according to the scoping review methodological framework proposed by the Joanna Briggs Institute [8], and refined by two methodological papers on how to conduct scoping reviews published by Peters at al. [9] and Tricco et al [10]

  • The dose delivered by a synchrotron broad beam (BB) has been considered as a control for Microbeam Radiation Therapy (MRT)

  • BB originating from synchrotron sources has the potential of achieving FLASH normal tissue sparing effect

Read more

Summary

Introduction

Of all cancer patients treated curatively, half will receive radiation therapy [1]. Despite these efforts, more than a quarter of a million people die from cancer in the EU annually [2]. Synchrotron X-ray microbeams have been recognized as a unique tool to overcome this limitation [4], eliciting scientific interest across the world in a radio-therapeutic application known as Microbeam Radiation Therapy (MRT). MRT consists of a spatially-modulated, co-planar array of low energy X-rays delivered to tumours [5]. Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call