Abstract
Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (∼30% of instruments deployed annually, n = 103 ± 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean’s structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.
Highlights
The world’s oceans are an essential part of the global climate system Abraham et al (2013)
Near real time data are relayed to the Data Assembly Centers (DACs) where automated processes are used to: (1) standardize the data and metadata into agreed-upon formats; (2) conduct preliminary quality control of the data; (3) generate Level 1 products - initially ocean CTD profiles; (4) convert Level 1 products to BUFR (Binary Universal Form for the Representation of meteorological data) messages and transmit those via the Global Telecommunication System (GTS) to operational centers for NRT assimilation
AniBOS is currently working with the COVERAGE project and collaborators at the NASA Jet Propulsion Laboratory to develop an interactive web platform to visualize and interact with animal borne CTD data sets. These are valuable forums to raise awareness in the broader community about the marine environment, climate change, the interaction between animal performance and climate and the conservation of biodiversity using these data collected by marine animals equipped with CTD-SRDLs
Summary
The world’s oceans are an essential part of the global climate system Abraham et al (2013). Marine animals in addition to the information they collect within the water column provide essential observations from the world’s ocean surface.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have