Abstract

Partially deuterated protonated water dimers, H2O·H(+)·D2O, H2O·D(+)·HDO, and HDO·H(+)·HDO, as important intermediates of isotopic labeled reaction of H3O(+) + D2O, undergo direct dissociation and indirect dissociation, i.e., isomerization before the dissociation. With Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations, we have computed their dissociation and isomerization rate constants separately under the harmonic and anharmonic oscillator models. On the basis of the dissociation and isomerization rate constants, branching ratios of two primary products, [HD2O(+)]∕[H2DO(+)], are predicted under various kinetics models with the harmonic or anharmonic approximation included. The feasible kinetics model accounting for experimental results is shown to include anharmonic effect in describing dissociation, while adopting harmonic approximation for isomerization. Thus, the anharmonic effect is found to play important roles affecting the dissociation reaction, while isomerization rates are shown to be insensitive to whether the anharmonic or harmonic oscillator model is being applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.