Abstract

The angle between subsequent particle displacement increments is evaluated as a function of the time lag in isotropic turbulence. It is shown that the evolution of this angle contains two well-defined power laws, reflecting the multiscale dynamics of high-Reynolds number turbulence. The probability density function of the directional change is shown to be self-similar and well approximated by an analytically derived model assuming Gaussianity and independence of the velocity and the Lagrangian acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.