Abstract

LISA is a space-borne, laser-interferometric gravitational wave detector currently under study by the European Space Agency. We give a brief introduction about the main features of the detector, concentrating on its one-year orbital motion around the Sun. We show that the amplitude as well as the phase of a gravitational wave is modulated due to that motion, allowing us to extract information from the signal. The most common way to estimate the parameters which characterize a signal present in a noisy data stream is to use the matched filtering technique. A brief review of the theory of parameter estimation, based on the work of Finn and Cutler, will be given. We carried out a simulation of the detection of a monochromatic gravitational wave based on that theory and focusing on estimating the angular parameters of the source. The results of the semi-analytic calculations are presented in detail and interpreted to determine the angular resolution of LISA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call