Abstract

Here we report a fundamental angle resolved study on bare dye solar cells, DSCs, and those coupled to two different prisms (hemi-cube and hemi-cylinder). The natural angular enhancement of incident photon-to-current conversion efficiency of DSCs is shown to further increase in the prisms case. This is partially due to the higher external transmittance and mainly to the longer optical path, achieved thanks to the tilted surfaces and optical density of the coupling elements. Results suggest possible use of DSCs with thin active layers (below 10μm) and micrometric refractive prisms or nanometric diffraction gratings on the surface, compensating the incomplete light absorption by an enhanced optical path. A simplified yet robust angular refractive path model, which includes Fresnel reflection, Snell’s refraction and Lambert–Beer absorption, can clearly explain the results and predict enhancements at larger angles than the used ones. The angular photo-electronic measurements revealed also an elegant tool to retrieve a dispersion curve for the effective refractive index neff(λ) of such a complex and absorbing medium as the sensitized porous titania filled with electrolyte. Such information could be used in the design and simulation of different photon management structures, from the macroscopic size of 3D photovoltaics architectures to the micro- and nano-scale of anti-reflection, refractive or diffraction texturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.