Abstract

Abstract We study the angular fluorescence intensity modulation of a single dye positioned near a spherical gold nanoparticle, induced by rotation of linearly polarized excitation light. Accurate positioning and alignment of nanoparticle and fluorophore with respect to each other and the incoming electric field is achieved by a three-dimensional, self-assembled DNA origami. An intensity map is obtained for a fixed distance and two different nanoparticle diameters, revealing polarization-dependent enhancement and quenching of fluorescence intensity in good agreement to numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.