Abstract
Angular dependence of magnetic field response of fully suspended resonant microelectromechanical double-clamped magnetoelectric beams was investigated as the basis for a vector magnetometer utilizing the magnetically induced change in fundamental resonance frequency. Strain-coupled magnetostrictive iron cobalt (FeCo) and piezoelectric aluminum nitride layers together constitute a magnetoelectric heterostructure with a high magnetic field sensitivity of 70 Hz/mT along the beam axis and a transfer function of 47 V/T at 10 Hz. The fundamental frequency shift to an external magnetic field is found to be strongly anisotropic with a relative variation of more than 3% between perpendicular and parallel field orientations with respect to the long axis of the beam at a field of 100 mT. This design can form the basis for an on-chip high sensitivity vector magnetometer operating with ultra-low power when multiplexed with two or more resonators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.