Abstract

Molecular dynamics (MD) simulations were performed to investigate F+ continuously bombarding SiC surfaces with energies of 100 eV at different incident angles at 300 K. The simulated results show that the steady-state uptake of F atoms increases with increasing incident angle. With the steady-state etching established, a Si-C-F reactive layer is formed. It is found that the etching yield of Si is greater than that of C. In the F-containing reaction layer, the SiF species is dominant with incident angles less than 30°. For all incident angles, the CF species is dominant over CF2 and CF3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.