Abstract

Abstract This paper furthers previous investigations into the zenith angular effect of cloud contamination within infrared (IR) window radiance observations commonly used in the retrieval of environmental data records (EDRs). Here analyses were performed of clear-sky forward radiance calculations versus observations obtained under clear to partly cloudy conditions over ocean. The authors utilized high-resolution IR spectra observed by the aircraft-based National Polar-Orbiting Partnership (NPP) Aircraft Sounder Test Bed-Interferometer (NAST-I) during the Joint Airborne Infrared Atmospheric Sounding Interferometer (IASI) Validation Experiment (JAIVEx) and performed forward calculations using collocated dropsondes. An aerosol optical depth EDR product derived from Geostationary Operational Environmental Satellite (GOES) was then applied to detect clouds within NAST-I fields of view (FOVs). To calculate the angular variation of clouds, expressions were derived for estimating cloud aspect ratios from visible imagery where cloud shadow lengths can be estimated relative to cloud horizontal diameters. In agreement with sensitivity calculations, it was found that a small cloud fraction within window radiance observations can have a measurable impact on the angular agreement with clear-sky calculations on the order of 0.1–0.4 K in brightness temperature. It was also found that systematic sun-glint contamination can likewise have an impact on the order of 0.1 K. These results are germane to IR sensor data record (SDR) calibration/validation and EDR retrieval schemes depending upon clear-sky SDRs, as well as radiative transfer modeling involving randomly distributed broken cloud fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.