Abstract
Abstract The Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI), together with the future Cross-track Infrared Sounder, will provide long-term hyperspectral measurements of the earth and its atmosphere at ∼10 km spatial resolution. Quantifying the radiometric difference between AIRS and IASI is crucial for creating fundamental climate data records and establishing the space-based infrared calibration standard. Since AIRS and IASI have different local equator crossing times, a direct comparison of these two instruments over the tropical regions is not feasible. Using the Geostationary Operational Environmental Satellite (GOES) imagers as transfer radiometers, this study compares AIRS and IASI over warm scenes in the tropical regions for a time period of 16 months. The double differences between AIRS and IASI radiance biases relative to the GOES-11 and -12 imagers are used to quantify the radiance differences between AIRS and IASI within the GOES imager spectral channels. The results indicate that, at the 95% confidence level, the mean values of the IASI − AIRS brightness temperature differences for warm scenes are very small, that is, −0.0641 ± 0.0074 K, −0.0432 ± 0.0114 K, and −0.0095 ± 0.0151 K for the GOES-11 6.7-, 10.7-, and 12.0-μm channels, respectively, and −0.0490 ± 0.0100 K, −0.0419 ± 0.0224 K, and −0.0884 ± 0.0160 K for the GOES-12 6.5-, 10.7-, and 13.3-μm channels, respectively. The brightness temperature biases between AIRS and IASI within the GOES imager spectral range are less than 0.1 K although the AIRS measurements are slightly warmer than those of IASI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.