Abstract

We have performed high resolution angle-resolved photoemission (ARPES) studies on electron-doped cuprate superconductors Sm2-xCexCuO4 (x=0.10, 0.15, 0.18), Nd2-xCexCuO4 (x=0.15), and Eu2-xCexCuO4 (x=0.15). Imaginary parts of the electron removal self energy show steplike features due to an electron-bosonic mode coupling. The steplike feature is seen along both nodal and antinodal directions but at energies of 50 and 70 meV, respectively, independent of the doping and rare earth element. Such energy scales can be understood as being due to preferential coupling to half- and full-breathing mode phonons, revealing the phononic origin of the kink structures. Estimated electron-phonon coupling constant lambda from the self energy is roughly independent of the doping and momentum. The isotropic nature of lambda is discussed in comparison with the hole-doped case where a strong anisotropy exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.