Abstract
In cardiac fibroblasts, angiotensin II (Ang II) can increase connexin 43 (Cx43) expression and promote calmodulin-dependent protein kinase II (CaMKII) activation. Cx43 overexpression is crucial for the fibroblast-myofibroblast transition. The main purpose of the present study was to investigate the role of CaMKII in regulating Cx43 expression and to determine whether the CaMKII/Cx43 pathway is essential for controlling fibroblast activation and differentiation. In vivo, 4 weeks of Ang II infusion enhanced CaMKII activation but reduced Cx43 expression in hearts undergoing fibrosis remodeling, while in cultured neonatal rat fibroblasts, CaMKII activation upregulated Cx43 expression via transforming growth factor-beta1 (TGF-β1). CaMKII inhibition by Ang-(1-7) or autocamtide 2-related inhibitory peptide reversed the Ang II-induced changes in Cx43 expression and attenuated Ang II-induced upregulation of alpha smooth muscle actin and TGF-β1 in both Ang II-infused rats and cultured fibroblasts. Based on the in vivo and in vitro experimental results, CaMKII plays a pivotal role in the Ang II-mediated fibroblast-myofibroblast transition by modulating the expressions of TGF-β1 and Cx43. We conclude that Ang II mediates the fibroblast-myofibroblast transition partially via the Ang II/CaMKII/TGF-β1/Cx43 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.