Abstract

Elevated dietary salt intake has previously been demonstrated to have dramatic effects on microvascular structure and function. The purpose of this study was to determine whether a high-salt diet modulates physiological angiogenesis in skeletal muscle. Male Sprague-Dawley rats were placed on a control diet (0.4% NaCl by weight) or a high-salt diet (4.0% NaCl) before implantation of a chronic electrical stimulator. After seven consecutive days of unilateral hindlimb muscle stimulation, animals on control diets demonstrated a significant increase in microvessel density in the tibialis anterior muscle of the stimulated hindlimb relative to the contralateral control leg. High salt-fed rats demonstrated a complete inhibition of this angiogenic response, as well as a significant reduction in plasma ANG II levels compared with those of control animals. To investigate the role of ANG II suppression on the inhibitory effect of high-salt diets, a group of rats that were fed high salt were chronically infused with ANG II at a low dose. Maintenance of ANG II levels restored stimulated angiogenesis to control levels in animals fed a high-salt diet. Western blot analysis indicated that inhibition of angiogenesis in high salt-fed rats was not due to changes in VEGF or VEGF receptor type 1 protein expression in response to stimulation; however, the degree to which VEGF receptor 2 protein increased with stimulation was significantly lower in high salt-fed animals. This study demonstrates an inhibitory effect of high salt intake on stimulated angiogenesis and suggests a critical role for ANG II suppression in mediating this antiangiogenic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.