Abstract
Objective: Chronic wounds have inadequate microvasculature (or blood vessels), resulting in poor healing. Both fresh human amniotic membrane (hAM) containing viable cells and devitalized hAM have been shown to stimulate angiogenesis in chronic wounds. However, the importance of retaining viable endogenous cells on the angiogenic activity of hAM remains unknown. To understand their role, we compared the angiogenic potential of intact cryopreserved hAM containing viable cells (int-hAM) with devitalized cryopreserved hAM (dev-hAM).Approach: The effects of conditioned medium (CM) derived from int-hAM and dev-hAM on endothelial cell migration and tube formation were compared. Int-hAM and dev-hAM CM and tissues were tested for key angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor-BB (PDGF-BB) after 7 days in culture. The role of VEGF in int-hAM-mediated tube formation was analyzed through inhibition of its activity by anti-VEGF antibody.Results: CM from int-hAM showed greater endothelial cell recruitment and tube formation compared with dev-hAM. Significantly higher levels of VEGF were detected in int-hAM CM after 1 week compared with dev-hAM CM. Int-hAM tissue also had significantly greater expression of VEGF and bFGF relative to dev-hAM. A similar trend was observed for PDGF-BB. Neutralization of VEGF in int-hAM CM significantly inhibited tube formation compared with int-hAM CM alone.Innovation and Conclusion: Preservation of all native hAM components, including viable endogenous cells, enhances the angiogenic effect of cryopreserved hAM. This effect is mediated through higher levels of angiogenic factors, especially VEGF, produced by int-hAM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have