Abstract

Background/purposeAngiogenesis is considered a crucial event for dental pulp regeneration. The purpose of this study was to demonstrate neovascularization during coronal pulp regeneration in rat molars using rat dental pulp cells (rDPCs) and to examine whether rDPC-endothelial cell interactions promote proangiogenic capacity in vitro. Materials and methodsMaxillary first molars of Wistar rats (n = 42) were pulpotomized and rDPCs isolated from incisors were implanted with a porous poly (l-lactic acid) (PLLA) scaffold and hydrogel (Matrigel). After 3, 7, and 14 days, coronal pulp tissues were examined histologically and by nestin and CD146 immunohistochemistry. rDPCs and rat dermal microvascular endothelial cells (rDMECs) were cocultured for 4 days and vascular endothelial growth factor (VEGF) synthesis and angiogenic factor gene expression were determined by enzyme-linked immunosorbent assays and real-time polymerase chain reaction, respectively. Effects of cocultured medium on tube formation by rDMECs were also evaluated. ResultsImplantation of rDPC/PLLA/Matrigel induced coronal pulp regeneration with dentin bridge formation and arrangement of nestin-positive odontoblast-like cells at 14 days. PLLA/Matrigel without rDPCs did not induce pulp regeneration. CD146-positive blood vessels increased in density in the remaining pulp tissues at 3 and 7 days, and in the regenerated pulp tissue at 14 days. rDPC/DMEC coculture significantly promoted VEGF secretion and mRNA expression of nuclear factor-kappa B, angiogenic chemokine CXCL1, and chemokine receptor CXCR1. Cocultured medium significantly promoted tube formation. ConclusionCoronal pulp regeneration with rDPC/PLLA/Matrigel was accompanied by neovascularization. rDPC-rDMEC interactions may promote angiogenic activity represented by proangiogenic factor upregulation and tube formation in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call