Abstract

Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.