Abstract

Excessive proteolytic activity is a feature of chronic wounds such as venous ulcers, in which resolution of the inflammatory response fails and restorative matrix accumulation is delayed as a consequence. The inflammatory actions of native androgens during the healing of acute skin wounds have lately been characterized. We have now investigated the hypothesis that such activities may impact upon the balance between anabolic and catabolic processes during wound healing. We report that wound deposition of both type I collagen and fibronectin is increased in castrated rats compared with control animals. This response is accompanied by early increases and later decreases in overall wound levels of the key collagenolytic enzymes, matrix metalloproteinase (MMP)-1 and MMP-13. Moreover, the activities of MMP-2 and MMP-9, two further enzymes that contribute to collagen digestion during venous ulceration, were significantly decreased in the wounds of castrated rats. Additional analyses provide evidence that androgens directly stimulate dermal fibroblast collagen production, which supports the suggestion that increased wound collagen deposition in androgen-deprived rats results from reduced matrix degradation (as opposed to enhanced matrix protein biosynthesis). Androgen-mediated dysregulation of the parallel processes of collagen deposition and turnover may underscore the delayed healing of cutaneous wounds in elderly male patients and further contribute to the increased incidence of non-healing wounds in this population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call