Abstract

We propose a setup in which Andreev-like reflections predicted for 1D transport systems could be observed time dependently using cold atoms in a 1D optical lattice. Using time-dependent density matrix renormalization group methods we analyze the wave packet dynamics as a density excitation propagates across a boundary in the interaction strength. These phenomena exhibit good correspondence with predictions from Luttinger liquid models and could be observed in current experiments in the context of the Bose-Hubbard model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.