Abstract

Based on the statistical dynamic mean-field theory, we investigate, in a generic model for a strongly coupled disordered electron–phonon system, the competition between polaron formation and Anderson localization. The statistical dynamic mean-field approximation maps the lattice problem to an ensemble of self-consistently embedded impurity problems. It is a probabilistic approach, focusing on the distribution instead of the average values for observables of interest. We solve the self-consistent equations of the theory with a Monte Carlo sampling technique, representing distributions for random variables by random samples, and discuss various ways to determine mobility edges from the random sample for the local Green function. Specifically, we give, as a function of the ‘polaron parameters’, such as adiabaticity and electron–phonon coupling constants, a detailed discussion of the localization properties of a single polaron, using a bare electron as a reference system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.