Abstract

We study the localization properties of non-interacting waves propagating in a speckle-like potential superposed on a one-dimensional lattice. Using a decimation/renormalization procedure, we estimate the localization length for a tight-binding Hamiltonian where site-energies are square-sinc-correlated random variables. By decreasing the width of the correlation function, the disorder patterns approaches a $\delta$-correlated disorder, and the localization length becomes almost energy-independent in the strong disorder limit. We show that this regime can be reached for a size of the speckle grains of the order of (lower than) four lattice steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call