Abstract
The Schrodinger difference operator considered here has the form $$(H_\varepsilon (\alpha )\psi )(n) = - (\psi (n + 1) + \psi (n - 1)) + V(n\omega + \alpha )\psi (n)$$ whereV is aC2-periodic Morse function taking each value at not more than two points. It is shown that for sufficiently smallɛ the operatorHɛ(α) has for a.e.α a pure point spectrum. The corresponding eigenfunctions decay exponentially outside a finite set. The integrated density of states is an incomplete devil's staircase with infinitely many flat pieces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have