Abstract

The Andaman–Nicobar–Sumatra subduction margin, with a well-developed Benioff zone down to ~ 200 km depth, extends over 1300 km along strike and has a lateral extent of ~ 200 km. Two-dimensional (2D) profiles based on generalized inversion of free-air gravity anomaly data across different segments of the Andaman–Nicobar sector of the margin were analyzed by reconstructing the geometry of the converging India–Eurasia lithospheric plates. Detailed 2D structures of the Ninetyeast Ridge (NER), fore-arc basin, volcanic arc, back-arc basin, spreading ridge, Sewell Rise, Mergui Ridge and Mergui Basin, and depths of Moho and the lithosphere–asthenosphere boundary were delineated. The volcanic arc is located at a distance of ~ 150–200 km from the trench and is marked by a zone of positive gravity anomaly separated from the trench by the fore-arc basin with a zone of gravity low. The topographic and gravity anomaly patterns show complex geometrical patterns over the volcanic arc due to the presence of a number of regional faults striking parallel to the trench axis developing a series of pull-apart (transtensional) basins as well as the interaction of the spreading ridges on the overriding plate. A narrow zone of negative gravity anomaly (~ − 185 to − 110 mGal) observed in the gravity model of the margin is interpreted to be associated with fore-arc shear fault above a zone of fractured oceanic crust with a thick sedimentary layer, located above a zone of sharp bending of the eastward converging Indian lithosphere in the fore-arc basin. A high concentration of seismicity and a trench-parallel band of moderate moment energy release along this fault might have been caused by concentrated deformation within the zone of flexing of the descending plate. A wide fore-arc (> 200 km) and the enhanced deformation of the subducting Indian oceanic plate in central sectors possibly resulted from increased interaction between the NER and the Andaman trench and extension in the Andaman back-arc. Appearance of a second moderate energy band and shifting of seismicity toward the trench axis following the 2004 MW 9.2 mega-event are apparently caused by the migration of the stress field from deeper to shallower part of the Indian lithosphere. A similar type of seismicity migration toward shallower part of the descending plate has been recorded along other subduction margins around the globe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.