Abstract

The orientational ordering and the electro-optical properties of nematic liquid crystal (LC) droplets confined to cross-linked polymer networks are investigated as a function of the anchoring conditions at the polymer-liquid crystal interface. Normal alignment (homeotropic) or parallel alignment (planar) inside LC droplets was controlled by using acrylate polymers with appropriate side chains. Drastic changes in the reorientation dynamics of the confined nematic liquid crystal phase are observed, as well as in the orientational ordering of the phase-separated LC which was investigated by 13C-NMR (nuclear magnetic resonance) spectroscopy. The cross-link density of the polymer network also affects the orientational ordering and the electro-optical properties of the confined LC phase. Faster switching times and higher-order parameters were found for samples with LC droplets exhibiting planar anchoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.