Abstract

We considered light scattering by a polydisperse ensemble of droplets of a nematic liquid crystal. To model light scattering by a monolayer of polymer-dispersed spherical droplets of a nematic liquid crystal with cylindrical symmetry of its internal structure, we proposed a semianalytical modeling method. The method is based on interference approximation of the theory of multiple wave scattering, anomalous diffraction approximation, and effective-medium approximation. The method takes into account cooperative optical effects in concentrated, partially ordered layers and can be used to analyze the small-angle structure of the intensity of scattered radiation in relation to the concentration, size, polydispersity of liquid crystal droplets, orientation of their optical axes, and refractive indices of the liquid crystal and polymer. The obtained relations can be applied to solving direct and inverse problems of light scattering in composite liquid crystal materials using data of polarization measurements. We present graphical results of solving the direct problem for components of the polarization vector of scattered wave. These results illustrate the formation of an angular structure for monolayers with a high concentration of polydisperse droplets of the liquid crystal in the range of small scattering angles (0 < θs ≤ 8°).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call